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ABSTRACT

Due to the easy transfer of images, audio, and video sources through an internet connection,

the amount of information online has exponentially grown in recent years. Nowadays, the

physical identity of a person is more important than it ever was because it can be easily manip-

ulated for purposes such as entertainment, spreading misinformation, manipulation, financial

gain and fraud, unauthorized access, revenge pornography, and political misleading. The ease

of finding information about the field of machine learning, modern and well-documented tools

like Pytorch, Tensorflow, or Keras, easy access to open-source datasets and pre-trained mod-

els, rapid improvement of deep learning methods such as Generative Adversarial Networks,

and inexpensive computational unit assets have made it possible for state-of-the-art deepfakes

to be created and serve one of the purposes mentioned above. This report aims to present

the results of an experiment conducted using the Vision Transformer (ViT) architecture, a

cutting-edge model in the field of computer vision, to classify videos as either deepfake or

authentic. By leveraging the powerful attention mechanisms of the Vision Transformer, this

report seeks to demonstrate its potential in accurately identifying manipulated media, thereby

contributing to the broader efforts in combating malicious activities facilitated by deepfake

technology. Through rigorous testing and analysis, this report will provide insights into the

performance, strengths, and limitations of the Vision Transformer in this critical application

area.

REZUMAT

Datorită transferului us,or al imaginilor s, i surselor audio, video printr-o conexiune la internet,

cantitatea de informat, ii online a crescut exponent, ial ı̂n ultimii ani. În prezent, identitatea

fizică a unei persoane este mai importantă decât a frost vreodată, deoarece poate fi us,or

manipulată ı̂n scopuri precum divertisment, răspândirea dezinformării, manipulare, câs, tig fi-

nanciar s, i fraudă, accesul neautorizat, răzbunare pornografică s, i influent,are politică. Us,urint,a

de a găsi informat, ii despre domeniul ı̂nvăt, ării automate, instrumente moderne s, i bine doc-

umentate precum Pytorch, Tensorflow sau Keras, accesul facil la seturi de date s, i modele

pre-antrenate, ı̂mbunătăt, irea rapidă a metodelor de Deep Learning, cum ar fi Generative Ad-

versarial Networks, s, i resursele ieftine ale unităt, ilor computat, ionale au făcut posibilă crearea

de deepfake-uri de ultimă generat, ie pentru a servi unul dintre scopurile ment, ionate mai sus.

Acest raport ı̂s, i propune să prezinte rezultatele unui eperiment realizat folosind arhitectura

Vision Transformer (ViT), un model de ultimă generat, ie ı̂n domeniul computer vision, pentru

a clasifica videoclipurile ca fiid fie deepfake, fie autentice. Prin valorificarea mecanismelor put-

ernice de atent, ie ale Vision Transformer, acest raport urmăres, te să demonstreze potent, ialul

său de a identifica cu acuratet,e sursele de media manipulate, contribuind astfel la eforturile

de combatere a activităt, ilor rău intent, ionate facilitate de tehnologia deepfake. Prin teste s, i

analize riguroase, acest raport va oferi perspective asupra performant,ei, punctelor forte s, i

limitărilor Vision Transformer ı̂n acest domeniu de detect, ie.
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1 INTRODUCTION

1.1 Context

According to Rana et al. (2022), the term ”Deepfake” is derived from ”Deep Learning (DL)”

and ”Fake”, and it describes specific photo-realistic video or image contents created with DL’s

support. This word was named after an anonymous Reddit user in late 2017, who applied deep

learning methods for replacing a person’s face in pornographic videos using another person’s

face and created photo-realistic fake videos.

Threat actors are using disinformation campaigns and deepfake content to misinform the public

about events, to influence politics and elections, to contribute to fraud, and to manipulate

shareholders in a corporate context. Many organisations have now begun to see deepfakes as

an even bigger potential risk than identity theft, according to Europol (2022). Even though

deepfakes pose a significant risk solely by their inherently deceptive nature, they are not the

greatest threat. However, the more immediate concern lies in how the concept of deepfakes can

be exploited to cast doubt on authentic content. Exaggerated media coverage and speculation

regarding the impact of deepfakes have diverted attention from actual instances where they

have made an impact. Worth mentioning is the concept of ”Crime as a Service” (CaaS),

wherein criminals offer access to tools, technologies, and expertise to facilitate cyber and

cyber-enabled crime. In Europol (2022) it is mentioned that CaaS is anticipated to progress

alongside current technologies, potentially automating crimes like hacking, adversatial machine

learning, and deepfakes. The increasing prevalence of disinformation and deepfakes is poised to

profoundly affect public perception of authority and media information. As deepfakes become

more widespread, trust in authorities and official information erodes. Experts express concerns

that this could result in a scenario where citizens no longer share a common reality, causing

societal confusion regarding reliable sources of information—a phenomenon sometimes termed

as ’information apocalypse’ or ’reality apathy.’

The Europol (2021) report shows that deepfake technology can facilitate varous criminal

activities, including:

• harassing or humiliating individuals online;

• perpetrating extortion and fraud;

• facilitating document fraud;

• falsifying online identities and fooling ‘know your customer’ mechanisms;

• non-consensual pornography

• online child sexual exploitation;

• falsifying or manipulating evidence for criminal justice investigations;
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• disrupting financial markets;

• distributing disinformation and manipulating public opinion;

• supporting the narratives of extremist or terrorist groups;

• stoking social unrest and political polarisation;

Recently, deepfake technology has advanced to remarkable heights, surpassing previous lim-

itations. What initially started as a specialized and technically intricate pursuit has swiftly

transformed into a pervasive trend. Nonetheless, with the evolution of technology, the distinc-

tion between creativity and deceit becomes increasingly blurred, presenting both astonishing

possibilities and troubling implications for shaping reality. Home Security Heroes (2023) men-

tioned that there are 550% more deepfake videos online in 2023 than in 2019. Their research

indicates that the digital realm will host a staggering 95820 deepfake videos, of which 98%

are of pornographic nature. 99% of deepfake videos features women as the primary subjects,

while only 1% of the content features men. South Korea is the country most targeted by deep-

fake forgery and 94% of those featured in deepfake content videos work in the entertainment

industry.

Over the past few years, significant focus from scholars and specialists has been directed

towards countering such dangers through advancements in Deepfake detection. This attention

has spurred the development of numerous techniques aimed at identifying and mitigating the

proliferation of Deepfake content.

1.1.1 Major Types

Understanding the types of deepfake content is crucial not only to analyze the technological

process itself but also to decipher the evolution of this content, its purposes, and where it is

heading. By comprehending the various types of deepfakes, we can gain a deeper perspective

on their impact in different fields, as well as their implications in contemporary society. From

harmless uses such as entertainment and artistic creation to dangerous ones like political

manipulation or information fraud, the diversity of deepfake types demonstrates the breadth

and complexity of this technological phenomenon.

As mentioned in Masood et al. (2021), deepfake content can be categorized into the following

types:

• Face Swapping - involves replacing the face of one person with that of another in a

video or image, creating a deceptive portrayal where the actions of the source person

are attributed to the target person. These deepfakes are often used to exploit the

fame or standing of well-known individuals by placing them in situations they never

experienced, potentially harming their reputation, such as in cases of non-consensual

pornography.

• Lips Syncing - involves altering the movements of a person’s lips to match a particular

audio recording. This technology aims to create the illusion of someone speaking in
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a manner dictated by the attacker, regardless of what the actual individual said or

intended.

• Puppet Master - involves replicating the expressions of the target person, including eye

movements, facial expressions, and head movements. These deepfakes aim to manipu-

late the source person’s expressions, and potentially even their entire body movements

in a video, to animate them according to the impersonator’s intentions.

• Face synthesis and attribute manipulation - involves creating highly realistic facial images

and altering facial attributes. These manipulations are often employed to propagate

misinformation on social media platforms through the use of fake profiles.

• Audio deepfakes - concentrate on producing the voice of the target speaker through

deep learning methods, allowing them to utter statements they haven’t actually said.

These fabricated voices can be created using either text-to-speech synthesis (TTS) or

voice conversion (VC) techniques.

The deepfake technology encompasses various types, including the one mentioned. These are

often utilized for deceptive purposes, such as spreading disinformation and damaging repu-

tations. However, alongside the evolution of deepfake creation methods, there is a parallel

effort to develop detection techniques to identify and mitigate the spread of misleading con-

tent. Further exploration into both the advancement of deepfake generation and detection

methods is crucial in addressing the ethical and societal challenges posed by this technology.

1.1.2 Detection

Deepfake Detection refers to the process of identifying and distinguishing manipulated or

synthetic media, known as deepfakes, from genuine or unaltered content. It involves the

development and application of various techniques, algorithms, and models to scrutinize media

content for signs of manipulation of artificial generation. These methods often analyze both

visual and auditory aspects of the media to identify inconsistencies, artifacts, or anomalies

that may indicate the presence of a deepfake. Common approaches to deepfake detection

include examining spatial and temporal inconsistencies, analyzing facial and body movements,

detecting artifacts left by the generation process, and assessing contextual clues.

The clarity and consistency of the classification in Naitali et al. (2023) regarding the clues

of deepfake sources are commendable. This work explores multiple categories of clues and

provides extensive explanations for each, along with models that identify deepfakes based on

these clues. Below, only the most relevant detection methods will be provided, which perform

well even in limited situations.

In the overview of face swap deepfake detection techniques and their limitations created by

Masood et al. (2021), there is a clear difference of best evaluation performance between the

methods that are using handcrafted features and those that use deep learning-based features.

There is a widespread recognition that deep learning-based models currently demonstrate

3



Figure 1: Clues of deepfake analysis Naitali et al. (2023)

the most outstanding performance in distinguishing between fabricated and authentic digital

media. These models utilize advanced neural network architectures referred to as backbone

networks, which have shown exceptional effectiveness in tasks related to computer vision. No-

table examples of such architectures are VGG (Simonyan & Zisserman (2014)), Resnet (Targ

et al. (2016)), EfficientNet(Tan & Le (2019)), Inception (Szegedy et al. (2016)), known for

their excellence in the feature extraction stage. Deep learning-based detection models surpass

traditional methods by integrating extra techniques to boost their effectiveness. Meta-learning

is one of such techniques, empowering the model to learn from previous experiences and adapt

its detection capabilities accordingly. Through these techniques, these model improve their

ability to identify patterns and differentiate between authentic and altered content.

Moreover, in the training of deep learning-based detection models, data augmentation plays

a pivotal role. This method involves enriching the training dataset with artificially generated

or modified samples, thereby enhancing the model’s ability to generalize and detect various

forms of deepfake media. Data augmentation enables the model to learn from a wider range

of examples and improves its robustness against different types of manipulations. Attention

mechanisms have also proven to be valuable additions to deep learning-based detection models.

By directing the model’s focus toward relevant features and regions of the input data, attention

mechanisms enhance the model’s discriminative power and improve its overall accuracy (Naitali

et al. (2023)). In summary, the integration of deep learning-based architectures, meta-learning,
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data augmentation, and attention mechanisms represents a significant advancement in the

field of deepfake detection.

The comparison between different detection methods presented in Masood et al. (2021) offers

a accurate and consistent review of a wide variety of detection techniques. In the research

Li & Lyu (2019), the detection mechanism proposed uses VGG16, ResNet50, ResNet101,

ResNet152 as techniques, DLib facial landmarks as features, and the best evaluation perfor-

mances of AUC(Google Developers (Year Accessed)) are 84.5 for VGG16, 97.4 for ResNet50,

95.4 for ResNet101, 93.8 for ResNet152. The dataset used is DeepFake-TIMIT(Idiap Re-

search Institute (2024)) and the limitation identified is that it is not robust for multiple video

compression. Another notable deepfake detection mechanism is the one proposed in Güera

& Delp (2018). This approach uses CNN/RNN as technique, deep features and the accuracy

obtained on a customized datased is 97.1%. One important limitation is that this model is

applicable to short videos only.

Worth mentioning is another type of deepfake detector architecture, the vision transformer

(Dosovitskiy et al. (2020)), long for ViT. It represents a robust alternative to convolutional

neural networks (CNNs), showcasing remarkable performance advancements. These models

have demonstrated superiority over state-of-the-art CNNs, offering nearly fourfold improve-

ments in both computational efficiency and accuracy. The central piece of ViTs are trans-

formers, a category of non-sequential deep learning models, which leverage self-attention

mechanisms to assign varying degrees of importance to different parts of input data Han

et al. (2021). A notable transformer variant is Video Transformer (Neimark et al. (2021)),

optimized for efficiently processing large-scale video data, thereby maximizing computational

resource usage and minimizing runtime. This capability enables full video processing during

test time, making VTNs particularly well-suited for handling lengthy videos.

Figure 2: Vision Transformer-Based Deepfake Detection Khormali & Yuan (2022)
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1.2 Report Structure

Up to this point, information has been provided regarding the field of study, classical and

modern approaches to solving the problem, and well-known datasets that have contributed

to the realm of deepfake content. The underlying reasons for the existence of this field, the

various types of such content, along with its associated risks and future implications, have

been outlined. In Chapter ”3 METHOD”, a Vision Transformer method, inspired by the article

Dosovitskiy et al. (2020) will be presented, detailing its architecture, implementation, and the

specific steps taken to apply it to the task of deepfake detection. This chapter will outline the

preprocessing techniques used to prepare the video data, the training process, including the

choice of loss functions and optimization algorithms, and the rationale behind selecting the

Vision Transformer for this experiment. Additionally, the chapter will discuss the evaluation

metrics used to assess the model’s performance, the experimental setup, and the challenges

encountered during the training and testing phases. The goal is to provide a comprehensive

understanding of how the Vision Transformer method was utilized and the results it yielded

in identifying deepfake content.

1.3 Related Work

The Vision Transformer (ViT) architecture, introduced by Dosovitskiy et al. (2020), represents

a significant shift in the design of deep learning models for computer vision tasks, traditionally

dominated by convolutional neural networks (CNNs). The ViT leverages the transformer ar-

chitecture, originally proposed by Vaswani (2017) for natural language processing, to process

image data, thereby challenging the long-standing dominance of CNNs in the field of com-

puter vision. Prior to the introduction of the ViT, transformers had primarily been used in

natural language processing (NLP). The transformer architecture’s self-attention mechanism,

which allows for capturing long-range dependencies in sequential data, was initially consid-

ered unsuitable for image processing due to the two-dimensional nature of images and the

prohibitive computational cost associated with processing high-resolution images. However,

the introduction of the ViT demonstrated that by splitting images into patches and treating

these patches as tokens in a sequence, transformers could be effectively applied to vision

tasks. This approach was shown to be highly effective, particularly in scenarios with large-

scale data, where ViTs could outperform state-of-the-art CNNs. Early methods for detecting

deepfakes primarily relied on CNNs to identify inconsistencies or artifacts in visual content.

These methods focused on pixel-level anomalies, such as irregularities in eye blinking, lighting

inconsistencies, and unnatural facial movements. Approaches like MesoNet (Afchar et al.

(2018)) and XcenptionNet(Chollet (2017)) demonstrated some success in detecting manipu-

lated images and videos, but they often struggled with high-quality deepfakes that effectively

masked such artifacts.

The introduction of Vision Transformers has brought a new dimension to deepfake detection.
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By treating image patches as tokens and leveraging self-attention mechanisms, ViTs can cap-

ture both local and global features in visual data more effectively than traditional CNNs. This

capability is particularly advantageous in deepfake detection, where subtle global inconsisten-

cies and fine-grained local anomalies must be identified. The application of ViTs to deepfake

detection is a relatively recent development, but early results suggests that they offer improved

performance, particularly in scenarios where large-scale datasets are available for training. To

further enhance detection capabilities, hybrid models that combine the strengths of CNNs

and ViTs have been proposed. These models typically use CNNs for initial feature extraction,

followed by transformers to model long-range dependencies. The Swin Transformer, proposed

in Liu et al. (2021) and its variants, which introduce hierarchical attention mechanisms, have

shown promise in detecting deepfakes in more complex scenarios, such as those involving mul-

tiple people or highly realistic audio-visual manipulations. Moreover, extentions of ViTs, such

as the Data-efficient Image Transformer (DEiT) and Swin Transformer, have been adapted

for deepfake detection tasks. These models are designed to operate efficienstly with limited

data, making them suitable for scanarios where annotated deepfake datasets are scarce.
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2 METHOD

In this report, we utilize a Vision Transformer (ViT) architecture for deepfake detection. The

ViT model is selected due to its ability to capture global context from input images, which is

crucial for identifying subtle manipulations in deepfakes. The architecture operates on image

patches rather than the entire image, allowing it to process high-resolution inputs efficiently.

2.1 Dataset

The Deepfake Detection Challenge (DFDC) (Dolhansky et al. (2020)) dataset stands at the

forefront of research into multimedia manipulation, particularly focusing on facial manipulation

techniques.

The dataset started from 48190 total videos that average 68.8s each - a total of 38.4 days

of footage. 3426 subjects were involved in total with an average of 14.4 videos each, with

most videos shot in 1080p. The authenticity of the 48000 videos in the DFDC dataset was

manipulated using various techniques, primarily focus on on face-swapping and audio-swapping

methods. One of the methods used is the convolutional autoencoder model, especially chosen

to reflect the technology behind existing deepfake videos on the internet. Another methods

that represent state-of-the-art generation technology, are the GAN-based Methods. Neural

Talking Heads (NTH) (Zakharov et al. (2019)) generates realist talking heads with few and

one-shot learning settings, incorporating meta-learning and fine-tuning stages. FSGAN (Nirkin

et al. (2019)) which employs GANs for face swapping and reenactment, considering pose

and expression variations. DFDC dataset includes audio swapping methods alongside face-

swapping techniques. Specifically, the TTS Skins (Polyak et al. (2020)) voice conversion

method was used to manipulate the audio in some of the video clips. While the dataset

primarily focuses on facial manipulation techniques, the inclusion of audio swapping adds

another dimension to the manipulation types explored within the dataset.

To calculate the total number of videos in the training, validation and test sets, the sum of the

number of videos in each set would add up to 133154 videos (119,154 for training, 4000 for

validation and 10000 for testing). The DFDC dataset represents a significant contribution to

the field of multimedia manipulation research, particularly in the context of deepfake detection

and analysis. By compiling over 133,000 videos across training, validation, and test sets, the

dataset provides a rich and diverse collection of manipulated and authentic multimedia content

for researchers and practitioners to explore.
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2.2 Image Extraction

The image classification task for deepfake detection is critical because it serves as the foun-

dational step in identifying manipulated content within a video. Each frame extracted from

the video is analyzed individually, and the accuracy of the model in classifying these frames as

real or fake determines the reliability of the overall detection process. The success of deepfake

detection hinges on the model’s ability to consistently and accurately classify each frame, as

even a small error rate could lead to false conclusions about the authenticity of the video.

Therefore, optimizing the image classification task is crucial to ensure robust and reliable

detection of deepfakes.

To enhance the accuracy of deepfake detection, the process begins by extracting faces from

individual video frames using a face detection model like MTCNN (Multi-task Cascaded Con-

volutional Networks). MTCNN is particularly well-suited for this task as it efficiently detects

faces and key facial landmarks, ensuring precise cropping of the facial region from each frame.

Once the faces are isolated, these extracted facial regions are passed through a deepfake de-

tection model, which focuses on identifying subtle manipulations and artifacts that are often

present in deepfakes. By concentrating exclusively on the facial area, the detection model can

more effectively analyze and identify potential signs of tampering, leading to more reliable

and accurate deepfake detection. This approach also minimizes the influence of irrelevant

background information, enabling the model to zero in on the most critical elements of the

video—the faces—where deepfake manipulations are most likely to occur.

In deepfake detection using frames, a unique challenge arises when individual frames from a

manipulated video appear to be unaltered. This situation can occur if the deepfake generation

model fails to consistently apply manipulations across all frames, resulting in a video where

some frames are technically part of a fake video but show no visible signs of alteration. These

unaltered frames can mislead detection models, as they do not exhibit the typical artifacts or

inconsistencies usually associated with deepfakes. This issue underscores the importance of

considering the context of the entire video rather than solely relying on the analysis of isolated

frames.

A future approach would be to train the deepfake detection model to incorporate not only the

original frames extracted from videos but also additional manipulated frames where specific

alterations, such as removing or distorting parts of the face, have been made. Methods for

augmenting faces extracted from frames were addressed in a Das et al. (2021) written by the

winner of the competition from which the dataset originates. One of the key benefits of using

face cutout techniques in deepfake detection is that it improves the model’s ability to focus

on relevant regions of the face, particularly the manipulated areas. By selectively occluding

certain facial regions, based on facial landmarks, the model avoids learning redundant or

irrelevant features, which can reduce overfitting. These artificially modified frames introduce

a wider variety of anomalies, enabling the model to learn and recognize a broader spectrum of

potential manipulations. By exposing the model to these diverse examples during training, it
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becomes more robust and less reliant on detecting only specific types of artifacts associated

with traditional deepfakes. This approach enhances the model’s ability to generalize to unseen

manipulations, making it more effective at identifying a wide range of deepfakes, including

those that use more sophisticated or subtle techniques. As a result, the model becomes more

adaptable and reliable in real-world scenarios, where the nature of manipulations can vary

significantly.

2.3 Vision Transformer Architecture

The Vision Transformer (ViT) architecture introduces a novel approach to image classifica-

tion by leveraging the transformer architecture, which has been highly successful in natural

language processing (NLP) tasks. The architecture adapts the transformer model for image

recognition by treating images as sequences of fixed-size patches, analogous to tokens in NLP,

and processing them with standard transformer layers.

In this architecture, an image is first divided into non-overlapping patches, typically 16x16

or 32x32 pixels in size, from a larger image, such as 224x224 pixels. Each patch is then

flattened into a one-dimensional vector and linearly embedded into a vector of dimension D,

which matches the transformer’s input dimension. These embeddings are supplemented with

position embeddings to retain information about the relative positions of patches within the

image since the transformer architecture does not inherently capture spatial relationships.

The sequence of patch embeddings, along with their corresponding position embeddings, is

fed into a standard transformer encoder. The transformer encoder consists of multiple layers

of multi-head self-attention mechanisms and feedforward neural networks. The self-attention

mechanism enables the model to weigh the importance of different patches relative to each

other, capturing both local and global dependencies across the image. This is achieved by

computing attention scores between all patches in the sequence and using these scores to

generate a weighted sum of the input patches.

Following the self-attention mechanism, each token is passed through a feedforward net-

work, typically consisting of two linear layers with a non-linear activation function in between,

enhancing the model’s capacity to learn complex representations of the input data. Both

the multi-head self-attention and feedforward network components are followed by layer nor-

malization and residual connections, which help stabilize training and improve the model’s

performance.

A classification token, which is a learned vector prepended to the sequence of patch embed-

dings before the transformer encoder, is used to represent the entire image after the final

transformer encoder layer. This classification token is passed through a final fully connected

layer, producing the logits corresponding to the predefined classes in the image recognition

task.
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When fine-tuning ViT using a pre-trained model like torchvision.models.ViT B 16 Weights.DEFAULT,

the process builds on the learned knowledge from a model that was previously trained on a

large dataset such as ImageNet. This pre-trained model includes weight configurations that

have already learned general image features, which can be adapted to specific tasks or datasets

through fine-tuning. It involves replacing the final classification layer with one suited to the

new task, while the remaining layers of the network are initialized with the pre-trained weights.

During training, the model adjusts these weights to better fit the new dataset, effectively

adapting the pre-trained model to the specific characteristics of the new images.

Figure 3: The model overview
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3 RESULTS

In this section, the outcomes of applying our proposed deepfake detection algorithm to 10%

of the dataset comprising authentic and synthetic media is evaluated. The evaluation reflects

various performance metrics, providing insights into the efficacy and efficiency of the approach

in identifying manipulated content.

Figure 4: Accuracy and Loss Evolution during fine-tuning

The fine-tuning was done using 10% of the dataset, which was split into test and train. The

training part has 6410 real images that come from 641 videos and 55594 fake images that

come from 5559 videos. The testing part has 1819 real images that come from approximately

182 videos and 15042 fake images that come from 1504 videos. The model obtained an

accuracy of 93,97%, which is better compared to the version that use Convolutional Neural

Networks for the same task and for the same dataset.

Table 1: Performance of the method using 10% of the dataset

precision recall f1-score support

0 0.82 0.67 0.74 1819

1 0.95 0.98 0.97 15042

macro avg 0.89 0.83 0.86 16861

Overall, the ViT shows impressive results, with an overall accuracy of 93.97%, which outper-

forms previous models using Convolutional Neural Networks (CNNs) on the same task and
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dataset. The model shows a strong ability to detect fake images, as demonstrated by its high

precision (0.95) and recall (0.98) for class 1 (fake images), leading to an excellent F1-score

of 0.97.

However, the model struggles slightly with identifying real images. While the precision for

real images is 0.82, indicating that most images identified as real are indeed real, the recall

is lower at 0.67, meaning that around one-third of real images are not correctly identified by

the model. This results in a moderately lower F1-score of 0.74 for real images.

The macro average F1-score of 0.86 reflects the performance imbalance between the two

classes, with the model excelling at detecting fake images but showing room for improvement

in accurately identifying real images. Despite this, the model’s high overall performance,

particularly for fake images, makes it highly effective for tasks where detecting fake content

is the priority.
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4 DISCUSSION

4.1 Performance Comparison

When comparing the performance of Vision Transformers (ViTs) and Convolutional Neural

Networks (CNNs) in classifying deepfake content, several differences emerge. CNNs, which

have traditionally excelled in image-related tasks due to their localized feature extraction

through convolutional filters, are highly effective in detecting subtle artifacts and spatial in-

consistencies that often characterize deepfake images. They are particularly strong in captur-

ing local texture and pixel-level patterns. However, ViTs, which treat images as sequences

of patches and use self-attention mechanisms to model both local and global dependencies,

offer a different advantage. Their ability to capture long-range relationships between patches

allows ViTs to better understand global context and higher-level features, making them po-

tentially more effective in detecting the more sophisticated, globally-consistent manipulations

found in advanced deepfake content. In practice, ViTs may outperform CNNs in tasks that

require understanding global coherence in images, while CNNs may still excel in tasks focused

on fine-grained texture analysis, leading to different trade-offs depending on the nature of the

deepfake content being classified.

Another key difference in the performance comparison between Vision Transformers (ViTs)

and Convolutional Neural Networks (CNNs) for classifying deepfake content lies in the training

processes. In the CNN-based approach, a ResNet50 architecture was employed, which relies

on pre-trained weights from models trained on large datasets like ImageNet. ResNet50, with

its deep convolutional layers, is highly optimized for capturing hierarchical features, but its

training is typically constrained to relatively smaller datasets like ImageNet (1K). On the

other hand, the ViT architecture was trained using the larger ImageNet-21k (often referred

to as ImageNet 16k), which contains millions more labeled images, providing a much richer

and diverse feature set for transfer learning. This more extensive pre-training enables the

ViT to capture broader and more complex visual patterns, which can be crucial in deepfake

detection, where subtle manipulations may require deeper feature understanding. As a result,

the ViT trained on ImageNet-21k is often better at generalizing to novel or unseen deepfake

examples compared to ResNet50 trained on a smaller dataset, though it may require more

computational resources and time to fine-tune effectively.
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4.2 Limitations

One key issue encountered during the classification of deepfake content using the Vision

Transformer (ViT) was related to the quality of the frames extracted from the videos. Specif-

ically, during the frame extraction process, some frames that were labeled as part of a fake

video actually resembled real, unmanipulated frames. This occurred because certain deepfake

techniques did not apply their alterations consistently across all frames. In cases where the

subject’s face made rapid movements or exhibited complex expressions, the deepfake algo-

rithm struggled to convincingly apply the fake overlay, resulting in certain frames that were

essentially untouched by the manipulation. These real-looking frames, despite being part of

a fake video, caused confusion during the ViT’s training and testing processes, as they did

not exhibit the typical artifacts or inconsistencies seen in most deepfakes. This limitation

could negatively impact the model’s ability to accurately classify deepfakes, as it may have

led to misclassification or reduced overall performance, particularly when dealing with more

advanced deepfake techniques that struggle with per-frame consistency.

Another significant limitation was the low percentage of real videos in the dataset. The

dataset used for training and testing the ViT, was highly imbalanced, with a much smaller

proportion of real videos compared to fake ones. This imbalance posed challenges for the

model’s ability to distinguish between genuine and manipulated content accurately. With

fewer real examples to learn from, the model may have become biased toward identifying

videos as fake, potentially leading to higher false positive rates.
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5 CONCLUSIONS AND FUTURE WORK

This report explored the detection of deepfake content with a focus on the Visual Transformer

(ViT) architecture, providing a detailed analysis of its strengths and limitations compared

to traditional methods like Convolutional Neural Networks (CNNs). The ViT architecture

demonstrated significant potential in detecting deepfakes due to its ability to model long-

range dependencies and capture global context across image patches. This allowed the model

to identify more sophisticated and globally consistent manipulations often found in deepfake

content. However, several challenges were identified, including inconsistent frame manipula-

tion in videos and dataset imbalances, particularly the low percentage of real videos. These

limitations affected the ViT’s performance, occasionally leading to misclassification and re-

duced robustness.

While the ViT shows promise in improving deepfake detection accuracy, particularly when

trained on large datasets like ImageNet-21k, addressing the issues of frame inconsistency and

dataset imbalance will be essential to enhance its effectiveness. Future work should focus on

improving the dataset diversity and refining pre-processing techniques, such as better frame

extraction methods, to mitigate the impact of unaltered frames in fake videos. Additionally,

hybrid approaches that combine the strengths of ViT and CNN architectures could further

boost detection capabilities in complex deepfake scenarios.

In addition to refining pre-processing techniques and addressing dataset imbalances, future

work should also explore integrating audio content into the deepfake detection process. Many

deepfake videos include manipulated audio along with visual alterations, and detecting in-

consistencies between the visual and audio streams could provide a more comprehensive and

accurate classification system. The introduction of audio analysis, in conjunction with the

ViT model, could help in identifying mismatches between lip movements and speech, further

improving the model’s detection performance.

Moreover, another critical avenue for future work is utilizing the full dataset, as only 10% of

the available data was used in this study. Expanding the dataset usage could improve the

model’s generalization and learning capacity, allowing it to better capture a wider range of

deepfake variations and real content. Training on a more diverse and complete dataset would

also help mitigate the bias introduced by the current dataset’s imbalance and enhance the

robustness of the ViT model in real-world deepfake detection scenarios.
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